Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650645

RESUMO

Abiotic stress caused by soil salinization remains a major global challenge that threatens and severely impacts crop growth, causing yield reduction worldwide. In this study, we aim to investigate the damage of salt stress on the leaf physiology of two varieties of rice (Huanghuazhan, HHZ, and Xiangliangyou900, XLY900) and the regulatory mechanism of Hemin to maintain seedling growth under the imposed stress. Rice leaves were sprayed with 5.0 µmol·L-1 Hemin or 25.0 µmol·L-1 ZnPP (Zinc protoporphyrin IX) at the three leaf and one heart stage, followed by an imposed salt stress treatment regime (50.0 mmol·L-1 sodium chloride (NaCl)). The findings revealed that NaCl stress increased antioxidant enzymes activities and decreased the content of nonenzymatic antioxidants such as ascorbate (AsA) and glutathione (GSH). Furthermore, the content of osmoregulatory substances like soluble proteins and proline was raised. Moreover, salt stress increased reactive oxygen species (ROS) content in the leaves of the two varieties. However, spraying with Hemin increased the activities of antioxidants such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and accelerated AsA-GSH cycling to remove excess ROS. In summary, Hemin reduced the effect of salt stress on the physiological characteristics of rice leaves due to improved antioxidant defense mechanisms that impeded lipid peroxidation. Thus, Hemin was demonstrated to lessen the damage caused by salt stress.


Assuntos
Antioxidantes , Glutationa , Hemina , Oryza , Estresse Salino , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Hemina/farmacologia , Antioxidantes/metabolismo , Estresse Salino/efeitos dos fármacos , Glutationa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Ascórbico/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Cloreto de Sódio/farmacologia , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo
2.
J Vis Exp ; (199)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37677032

RESUMO

Bacterial extracellular vesicles (BEVs) are nanovesicles derived from bacteria that play an active role in bacteria-bacteria and bacteria-host communication, transferring bioactive molecules such as proteins, lipids, and nucleic acids inherited from the parent bacteria. BEVs derived from the gut microbiota have effects within the gastrointestinal tract and can reach distant organs, resulting in significant implications for physiology and pathology. Theoretical investigations that explore the types, quantities, and roles of BEVs derived from human feces are crucial for understanding the secretion and function of BEVs from the gut microbiota. These investigations also necessitate an improvement in the current strategy for isolating and purifying BEVs. This study optimized the isolation and purification process of BEVs by establishing two density gradient centrifugation (DGC) modes: Top-down and Bottom-up. The enriched distribution of BEVs was determined in fractions 6 to 8 (F6-F8). The effectiveness of the approach was evaluated based on particle morphology, size, concentration, and protein content. The particle and protein recovery rates were calculated, and the presence of specific markers was analyzed to compare the recovery and purity of the two DGC modes. The results indicated that the Top-down centrifugation mode had lower contamination levels and achieved a recovery rate and purity similar to that of the Bottom-up mode. A centrifugation time of 7 h was sufficient to achieve a fecal BEV concentration of 108/mg. Apart from feces, this method could be applied to other body fluid types with proper modification according to the differences in components and viscosity. In conclusion, this detailed and reliable protocol would facilitate the standardized isolation and purification of BEVs and thus, lay a foundation for subsequent multi-omics analysis and functional experiments.


Assuntos
Líquidos Corporais , Vesículas Extracelulares , Humanos , Fezes , Centrifugação , Centrifugação com Gradiente de Concentração
3.
PLoS One ; 18(6): e0286505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37315011

RESUMO

Prohexadione-calcium (Pro-Ca) has been proved to play an important role in releasing abiotic stress in plants. However, there is still a lack of research on the mechanism of Pro-Ca alleviating salt stress in rice. To explore the protective effects of Pro-Ca on rice seedlings under salt stress, we investigated the effect of exogenous Pro-Ca on rice seedling under salt stress by conducting the following three treatment experiments: CK (control), S (50 mmol·L-1 NaCl saline solution) and S + Pro-Ca (50 mmol·L-1 NaCl saline solution + 100 mg·L-1 Pro-Ca). The results indicated that Pro-Ca modulated the expression of antioxidant enzyme-related genes (such as SOD2, PXMP2, MPV17, E1.11.1.7). Spraying Pro-Ca under salt stress significantly increased in ascorbate peroxidase, superoxide dismutase, and peroxidase activity by 84.2%, 75.2%, and 3.5% as compared to the salt treatment, as demonstrated by an example of a 24-hour treatment. Malondialdehyde level in Pro-Ca was also dramatically decreased by 5.8%. Moreover, spraying Pro-Ca under salt stress regulated the expression of photosynthesis genes (such as PsbS, PsbD) and chlorophyll metabolism genes (heml, PPD). Compared to salt stress treatment, spraying Pro-Ca under salt stress significantly increased in net photosynthetic rate by 167.2%. In addition, when rice shoots were sprayed with Pro-Ca under salt stress, the Na+ concentration was considerably reduced by 17.1% compared to salt treatment. In conclusion, Pro-Ca regulates antioxidant mechanisms and photosynthesis to aid in the growth of rice seedlings under salt stress.


Assuntos
Cálcio , Oryza , Plântula/genética , Oryza/genética , Antioxidantes , Solução Salina , Cloreto de Sódio , Cálcio da Dieta , Estresse Salino , Fotossíntese , Perfilação da Expressão Gênica
4.
Sci Rep ; 13(1): 3497, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859499

RESUMO

It is widely known that salt stress restricts rice growth and productivity severely. However, little information is available regarding the stage of rice seedlings subjected to the Heme oxygenase 1 (HO-1) inducer, Hemin. This study aimed to investigate the effects of salt stress on two rice varieties (Huanghuazhan and Xiangliangyou 900) and the effect of Hemin in promoting photosynthesis, carbohydrate metabolism, and key enzymes under salt-stress conditions. At the stage of three leaves and one heart, Huanghuazhan (HHZ) and Xiangliangyou 900 (XLY900) were sprayed with 5 µmol·L-1 Hemin and then subjected to 50 mM NaCl stress. The results showed that NaCl stress decreased the contents of chlorophyll a, chlorophyll b, and carotenoids. Furthermore, the net photosynthetic rate (Pn) decreased remarkably and the starch content was also lowered. However, NaCl treatment enhanced the concentration of sucrose and soluble sugar, simultaneously enhancing the sucrose metabolism. Nevertheless, the foliar spraying of exogenous Hemin mediated the increase in fructose and starch content, along with the activities of key enzymes' soluble acid invertase (SAInv), basic/neutral invertase (A/N-Inv), and sucrose synthase (SS) in rice leaves under NaCl stress. The sucrose phosphate synthase (SPS) in leaves decreased significantly, and the fructose accumulation in leaves increased. Hemin also mediated the increase of starch content and the α-amylase, total amylase, and starch phosphorylase (SP) activities under NaCl stress. Under stress conditions, the application of the Heme oxygenase 1 (HO-1) inhibitor, ZnPP failed to alleviate the damage to rice seedlings by NaCl stress. The ZnPP treatment showed similar tendency to the NaCl treatment on pigment content, gas exchange parameters and carbon metabolism related products and enzymes. However, ZnPP decreased carotenoids, fructose, starch content and enzyme activities related to starch metabolism. The regulation effect of Hemin on HuangHuaZhan was better than XiangLiangYou 900. These results indicate that Hemin improved the effects of salt stress on the photosynthesis and physiological characteristics of rice leaves as a result of enhanced carbohydrate metabolism. Thus, Hemin could alleviate the damage caused by salt stress to a certain extent.


Assuntos
Oryza , Heme Oxigenase-1 , Hemina , Plântula , Cloreto de Sódio , Clorofila A , Fotossíntese , Carbono , Carotenoides
5.
Hepatobiliary Surg Nutr ; 12(1): 3-19, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36860242

RESUMO

Background: Lipid dysregulation plays a fundamental role in nonalcoholic steatohepatitis (NASH), which is an emerging critical risk factor that aggravates hepatic ischemia/reperfusion (I/R) injury. However, the specific lipids that mediate the aggressive I/R injury in NASH livers have not yet been identified. Methods: The mouse model of hepatic I/R injury on NASH was established on C56B/6J mice by first feeding the mice with a Western-style diet to induce NASH, then the NASH mice were subjected to surgical procedures to induce hepatic I/R injury. Untargeted lipidomics were performed to determine hepatic lipids in NASH livers with I/R injury through ultra-high performance liquid chromatography coupled with mass spectrometry. The pathology associated with the dysregulated lipids was examined. Results: Lipidomics analyses identified cardiolipins (CL) and sphingolipids (SL), including ceramides (CER), glycosphingolipids, sphingosines, and sphingomyelins, as the most relevant lipid classes that characterized the lipid dysregulation in NASH livers with I/R injury. CER were increased in normal livers with I/R injury, and the I/R-induced increase of CER was further augmented in NASH livers. Metabolic pathway analysis revealed that the enzymes involved in the synthesis and degradation of CER were highly upregulated in NASH livers with I/R injury, including serine palmitoyltransferase 3 (Sptlc3), ceramide synthase 2 (Cers2), neutral sphingomyelinase 2 (Smpd3), and glucosylceramidase beta 2 (Gba2) that produced CER, and alkaline ceramidase 2 (Acer2), alkaline ceramidase 3 (Acer3), sphingosine kinase 1 (Sphk1), sphingosine-1-phosphate lyase (Sgpl1), and sphingosine-1-phosphate phosphatase 1 (Sgpp1) that catalyzed the degradation of CER. CL were not affected by I/R challenge in normal livers, but CL was dramatically reduced in NASH livers with I/R injury. Consistently, metabolic pathway analyses revealed that the enzymes catalyzing the generation of CL were downregulated in NASH-I/R injury, including cardiolipin synthase (Crls1) and tafazzin (Taz). Notably, the I/R-induced oxidative stress and cell death were found to be aggravated in NASH livers, which were possibly mediated by the reduction of CL and accumulation of CER. Conclusions: The I/R-induced dysregulation of CL and SL were critically rewired by NASH, which might potentially mediate the aggressive I/R injury in NASH livers.

6.
PLoS One ; 18(3): e0279192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36930609

RESUMO

Salt stress, as a principal abiotic stress, harms the growth and metabolism of rice, thus affecting its yield and quality. The tillering stage is the key growth period that controls rice yield. Prohexadione-calcium (Pro-Ca) can increase the lodging resistance of plants by reducing plant height, but its effects on rice leaves and roots at the tillering stage under salt stress are still unclear. This study aimed to evaluate the ability of foliar spraying of Pro-Ca to regulate growth quality at the rice tillering stage under salt stress. The results showed that salt stress reduced the tillering ability of the rice and the antioxidant enzyme activity in the roots. Salt stress also reduced the net photosynthetic rate (Pn), stomatal conductance (Gs) and intercellular CO2 concentration (Ci) of the rice leaves and increased the contents of osmotic regulatory substances in the leaves and roots. The application of exogenous Pro-Ca onto the leaves increased the tiller number of the rice under salt stress and significantly increased the photosynthetic capacity of the leaves. Additionally, it increased the activities of antioxidant enzymes and the AsA content. The contents of an osmotic regulation substance, malondialdehyde (MDA), and H2O2 in the leaves and roots also decreased. These results suggested that Pro-Ca can increase the tillering ability, photosynthetic capacity, osmotic adjustment substance content levels and antioxidant enzyme activity levels in rice and reduce membrane lipid peroxidation, thus improving the salt tolerance of rice at the tillering stage.


Assuntos
Antioxidantes , Oryza , Antioxidantes/metabolismo , Cálcio/metabolismo , Peróxido de Hidrogênio/metabolismo , Folhas de Planta/metabolismo , Estresse Salino , Cálcio da Dieta/metabolismo , Plântula
7.
PeerJ ; 11: e14804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778152

RESUMO

Salt stress affects crop quality and reduces crop yields, and growth regulators enhance salt tolerance of crop plants. In this report, we examined the effects of prohexadione-calcium (Pro-Ca) on improving rice (Oryza sativa L.) growth and tillering under salt stress. We found that NaCl stress inhibited the growth of two rice varieties and increased malondialdehyde (MDA) levels, electrolyte leakage, and the activities of the antioxidant enzymes. Foliar application of Pro-Ca reduced seedling height and increased stem base width and lodging resistance of rice. Further analyses showed that Pro-Ca application reduced MDA content, electrolyte leakage, and membrane damage in rice leaves under NaCl stress. Pro-Ca enhanced the net photosynthetic rate (Pn), stomatal conductance (Gs), and intercellular CO2 concentration (Ci) of rice seedlings, while increasing the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbic acid peroxidase (APX) at the tillering stage under salt stress. Overall, Pro-Ca improves salt tolerance of rice seedlings at the tillering stage by enhancing lodging resistance, reducing membrane damages, and enhancing photosynthesis and antioxidant capacities of rice seedlings.


Assuntos
Antioxidantes , Oryza , Antioxidantes/farmacologia , Cloreto de Sódio/farmacologia , Fotossíntese , Peroxidases/metabolismo , Cálcio da Dieta/farmacologia
8.
PeerJ ; 11: e14673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710858

RESUMO

Prohexadione calcium (Pro-Ca), as a growth retardant, can effectively alleviate the damage of salt stress to plants. In order to explore the effects of NaCl stress on the physiological characteristics and panicle traits of rice plants as well as the alleviating effect of Pro-Ca at the booting stage, we performed pot experiments on two rice cultivars: conventional rice 'Huanghuazhan' and hybrid rice 'Xiangliangyou900'. Rice plants were treated with 0.3% NaCl 48 hours after Pro-Ca (100 mg L-1) treatment to study the effects of Pro-Ca on the physiological characteristics of the leaves and panicles, as well as the panicle and yield traits of rice under salt stress. Our analysis indicated that NaCl treatment inhibited the morphological growth parameters and photosynthetic efficiency, destroyed the antioxidant defense systems of leaves and panicles, increased soluble protein and proline in both rice cultivars. Foliar application of Pro-Ca significantly increased the leaf area, uppermost internode length, panicle length, panicle weight, number of primary branches, number of grains per panicle, seed setting rate and yield under salt stress. Pro-Ca application significantly affected chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and apparent mesophyll conductance (AMC) in NaCl-treated rice cultivars compared with NaCl treatment alone. Moreover, Pro-Ca also increased ascorbic acid (AsA) content, enhanced superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity, and further increased the accumulation of soluble protein and proline in leaves and panicles. These results illustrated that foliar application of Pro-Ca at the booting stage could alleviate the damage caused by NaCl stress by regulating the physiological and metabolic processes of rice plants, thereby enhancing the stress resistance of the plants, increasing total rice yield in salt stress conditions.


Assuntos
Oryza , Cloreto de Sódio/farmacologia , Antioxidantes/farmacologia , Estresse Salino , Cálcio da Dieta/metabolismo , Prolina/farmacologia
9.
Cell Death Dis ; 12(4): 324, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771984

RESUMO

Post-hepatectomy liver dysfunction is a life-threatening morbidity that lacks efficient therapy. Bioactive lipids involved in macrophage polarization crucially regulate tissue injury and regeneration. Herein, we investigate the key bioactive lipids that mediate the cytotherapeutic potential of polarized-macrophage for post-hepatectomy liver dysfunction. Untargeted lipidomics identified elevation of ceramide (CER) metabolites as signature lipid species relevant to M1/M2 polarization in mouse bone-marrow-derived-macrophages (BMDMs). M1 BMDMs expressed a CER-generation-metabolic pattern, leading to elevation of CER; M2 BMDMs expressed a CER-breakdown-metabolic pattern, resulting in upregulation of sphingosine-1-phosphate (S1P). After infusing M1- or M2-polarized BMDMs into the mouse liver after hepatectomy, we found that M1-BMDM infusion increased M1 polarization and CER accumulation, resulting in exaggeration of hepatocyte apoptosis and liver dysfunction. Conversely, M2-BMDM infusion enhanced M2 polarization and S1P generation, leading to alleviation of liver dysfunction with improved hepatocyte proliferation. Treatment of exogenous CER and S1P or inhibition CER and S1P synthesis by siRNA targeting relevant enzymes further revealed that CER induced apoptosis while S1P promoted proliferation in post-hepatectomy primary hepatocytes. In conclusion, CER and S1P are uncovered as critical lipid mediators for M1- and M2-polarized BMDMs to promote injury and regeneration in the liver after hepatectomy, respectively. Notably, the upregulation of hepatic S1P induced by M2-BMDM infusion may have therapeutic potential for post-hepatectomy liver dysfunction.


Assuntos
Ceramidas/metabolismo , Hepatectomia/métodos , Fígado/patologia , Lisofosfolipídeos/metabolismo , Metabolômica/métodos , Esfingosina/análogos & derivados , Animais , Modelos Animais de Doenças , Humanos , Fígado/cirurgia , Camundongos , Esfingosina/metabolismo , Transfecção
10.
Aging (Albany NY) ; 12(19): 19641-19659, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33049716

RESUMO

While cancer immunotherapy has been remarkably successful in some malignancies, some cancers derive limited benefit from current immunotherapies. Here, we combined immune landscape signatures with hepatocellular carcinoma clinical and prognostic features to classify them into distinct subtypes. The immunogenomic profiles, stromal cell features and immune cell composition of the subtypes were then systematically analyzed. Two independent prognostic indexes were established based on 6 immune-related genes and 17 differentially expressed genes associated with stromal cell content. These indexes were significantly correlated with tumor mutation burden, deficient DNA mismatch repair and microsatellite instability. In addition, tumor-infiltrating lymphocytes, including activated NK cells, resting memory CD4 T-cells, eosinophils, and activated mast cells were significantly correlated with hepatocellular carcinoma survival. In conclusion, we have comprehensively described the immune landscape signatures and identified prognostic immune-associated biomarkers of hepatocellular carcinoma. Our findings highlight potential novel avenues for improving responses to immunotherapy.

11.
Free Radic Biol Med ; 159: 136-149, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738398

RESUMO

BACKGROUND: Nonalcoholic fatty liver (NAFL) is emerging as a leading risk factor of hepatic ischemia/reperfusion (I/R) injury lacking of effective therapy. Lipid dyshomeostasis has been implicated in the hepatopathy of NAFL. Herein, we investigate the bioactive lipids that critically regulate I/R injury in NAFL. METHODS: Lipidomics were performed to identify dysregulated lipids in mouse and human NAFL with I/R injury. The alteration of corresponding lipid-metabolizing genes was examined. The effects of the dysregulated lipid metabolism on I/R injury in NAFL were evaluated in mice and primary hepatocytes. RESULTS: Sphingolipid metabolic pathways responsible for the generation of sphingosine-1-phosphate (S1P) were uncovered to be substantially activated by I/R in mouse NAFL. Sphingosine kinase 1 (Sphk1) was found to be essential for hepatic S1P generation in response to I/R in hepatocytes of NAFL mice. Sphk1 knockdown inhibited the hepatic S1P rise while accumulating ceramides in hepatocytes of NAFL mice, leading to aggressive hepatic I/R injury with upregulation of oxidative stress and increase of reactive oxygen species (ROS). In contrast, administration of exogenous S1P protected hepatocytes of NAFL mice from hepatic I/R injury. Clinical study revealed a significant activation of S1P generation by I/R in liver specimens of NAFL patients. In vitro studies on the L02 human hepatocytes consolidated that inhibiting the generation of S1P by knocking down SPHK1 exaggerated I/R-induced damage and oxidative stress in human hepatocytes of NAFL. CONCLUSIONS: Generation of S1P by SPHK1 is important for protecting NAFL from I/R injury, which may serve as therapeutic targets for hepatic I/R injury in NAFL.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Traumatismo por Reperfusão , Animais , Hepatócitos/metabolismo , Humanos , Isquemia , Lisofosfolipídeos , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/genética , Transdução de Sinais , Esfingosina/análogos & derivados
13.
Cell Death Dis ; 11(1): 28, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949129

RESUMO

Overload of palmitic acids is linked to the dysregulation of ceramide metabolism in nonalcoholic steatohepatitis (NASH), and ceramides are important bioactive lipids mediating the lipotoxicity of palmitic acid in NASH. However, much remains unclear about the role of ceramidases that catalyze the hydrolysis of ceramides in NASH. By analyzing the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database, we found that alkaline ceramidase 3 (ACER3) is upregulated in livers of patients with NASH. Consistently, we found that Acer3 mRNA levels and its enzymatic activity were also upregulated in mouse livers with NASH induced by a palmitate-enriched Western diet (PEWD). Moreover, we demonstrated that palmitate treatment also elevated Acer3 mRNA levels and its enzymatic activity in mouse primary hepatocytes. In order to investigate the function of Acer3 in NASH, Acer3 null mice and their wild-type littermates were fed a PEWD to induce NASH. Knocking out Acer3 was found to augment PEWD-induced elevation of C18:1-ceramide and alleviate early inflammation and fibrosis but not steatosis in mouse livers with NASH. In addition, Acer3 deficiency attenuated hepatocyte apoptosis in livers with NASH. These protective effects of Acer3 deficiency were found to be associated with suppression of hepatocellular oxidative stress in NASH liver. In vitro studies further revealed that loss of ACER3/Acer3 increased C18:1-ceramide and inhibited apoptosis and oxidative stress in mouse primary hepatocytes and immortalized human hepatocytes induced by palmitic-acid treatment. These results suggest that ACER3 plays an important pathological role in NASH by mediating palmitic-acid-induced oxidative stress.


Assuntos
Ceramidase Alcalina/metabolismo , Apoptose/genética , Hepatopatia Gordurosa não Alcoólica/enzimologia , Estresse Oxidativo/genética , Ceramidase Alcalina/deficiência , Ceramidase Alcalina/genética , Animais , Sobrevivência Celular/genética , Cromatografia Líquida , Dieta Ocidental , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Inflamação/dietoterapia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/enzimologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Palmítico/farmacologia , Espectrometria de Massas em Tandem , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...